Bernstein Inequality

Let X1,X2,...,XkX_1,X_2,...,X_k be independent random variables with each Xi[1,1]X_i \in [-1,1]. Let μi=𝔼[Xi]\mu_i = \mathbb{E}[X_i] and σi2=Var[Xi]\sigma_i^2=\mathrm{Var}[X_i]. Let μ=iμi\mu=\sum_i \mu_i and σ2=iσi2\sigma^2 = \sum_i \sigma_i^2. Then, for k12σk \leq \frac{1}{2}\sigma, S=iXiS=\sum_i X_i satisfies Pr[|Sμ|>kσ]2ek24\mathrm{Pr}[|S-\mu| > k \cdot \sigma]\leq 2e^{-\frac{k^2}{4}}


Example of Concentration inequality.

Special cases: Chernoff Bound, Hoeffding Inequality, Azuma’s Inequality

References: