Let X1,X2,...,XkX_1,X_2,...,X_k be independent random variables with each Xi∈[−1,1]X_i \in [-1,1]. Let μi=𝔼[Xi]\mu_i = \mathbb{E}[X_i] and σi2=Var[Xi]\sigma_i^2=\mathrm{Var}[X_i]. Let μ=∑iμi\mu=\sum_i \mu_i and σ2=∑iσi2\sigma^2 = \sum_i \sigma_i^2. Then, for k≤12σk \leq \frac{1}{2}\sigma, S=∑iXiS=\sum_i X_i satisfies Pr[|S−μ|>k⋅σ]≤2e−k24\mathrm{Pr}[|S-\mu| > k \cdot \sigma]\leq 2e^{-\frac{k^2}{4}}
Example of Concentration inequality.
Special cases: Chernoff Bound, Hoeffding Inequality, Azuma’s Inequality
References: